Division Ring
A ring with identity \(R\) is called a division ring if \(1 \neq 0\), and every element \(a \in R\) has an inverse element under the operation \( \cdot: R \times R \rightarrow R \).
A ring with identity \(R\) is called a division ring if \(1 \neq 0\), and every element \(a \in R\) has an inverse element under the operation \( \cdot: R \times R \rightarrow R \).