Right Distributive Law
Let \(A\) be a set , and let \(\ast:A \times A \rightarrow A\) and \(\star:A \times A \rightarrow A\) be binary operations . We say that \(\star\) right distributes over \(\ast\) provided for any \(a,b,c \in A\):
\[ (b \ast c) \star a=(b \star a) \ast (c \star a) \]