Zero-Divisor
Let \(R\) be a ring . We call a non-zero element \(a \in R\) a zero-divisor if there exists a non-zero element \(b \in R\) for which
\[ab=0\]Let \(R\) be a ring . We call a non-zero element \(a \in R\) a zero-divisor if there exists a non-zero element \(b \in R\) for which
\[ab=0\]